

INDIAN SCHOOL AL WADI AL KABIR

FINAL EXAMINATION (2023-24) Sub: Chemistry (043) SET-II -MS

Date:	Date: 29.02.2024 Max. Marks:	
Class:	s: XI Time Allowed: 3 hours	
1.	c) multiple proportion	1
2.	(c)0.125 mol	1
3.	(b) 3	1
4.	a) F	1
5.	c) covalent bonds involving H, N, or O	1
6.	c) Open system	1
7.	(a) the rates of the forward and reverse reactions are equal.	1
8.	(a) the ratio of product concentrations to reactant concentrations at equilibrium.	1
9.	(a) transfer of electrons between atoms or ions.	1
10.	a) loses electrons and is oxidised.	1
11	(c) hyperconjugation effect	1
12	(b) But-1-ene	1
13.	A If both Assertion & Reason are true and the reason is the correct explanation of the assertion.	1
14	A If both Assertion & Reason are true and the reason is the correct explanation of the assertion.	1
15.	D If Assertion is false but Reason is true	1

16.	A If both Assertion & Reason are true and the reason is the correct explanation of the assertion.	1
17.	The percentage of Carbon :24.0 g/mol \div 46.0 g/mol \times 100 = 52.2 % of Carbon The percentage of Hydrogen :6.0 g/mol \div 46.0 g/mol \times 100 = 13.0 %	1 1
	OR	
	C=54.554/12=4.544.54/2.27=2	1
	H=9.19.1/1=9.19.1/2.27=4	
	O=36.436.4/16=2.272.27/2.27=1	
	C_2H_4O	1
18	Size of an atom or effective nuclear charge Explanation using Na and Mg	$\frac{1}{2} + \frac{1}{2}$
19.	$Qc = [HBr]^2/[H_2][Br_2]=2.25x10^4$	1
	As Qc is greater than Kc the reaction will shift in the reverse direction.	1
20	Heterolytic fission	1
	resulting in the electrons sinted to Carbon making a carbanion	1
21.	(a) Alkanes contain only carbon-carbon and carbon-hydrogen bonds. Because carbon and hydrogen have similar electronegativity values, the C—H bonds are essentially nonpolar.	1
	(b) As the branching increases boiling point reduces	1
	OR	1/2 +1/2
	(a) A- Eclipsed form B- Staggered form(b) Staggered form more stable because torsional strain less	1/2 +1/2
	Section C	
22.		1
	(a) Limiting reagent is the one that limits the formation of products (b) Mg is the limiting reagent	1
	(c) 5 Mg \longrightarrow 5MgO = 200 g MgO	1
23	(a) Heisenberg's uncertainty principle states that it is impossible to measure	1
	exactly both the position and the momentum of an object simultaneously (b) $\lambda = h/my =$	1
	$6.626 \times 10^{-34} / 0.1 \times 30 = 2.212 \times 10^{-34} \text{ m}$	

		1
	(a) angular nodes = 1	
	radial nodes = 0	1/2 +1/2
	(b) $E=2.18 \times 10^{-18} [1 - 1/25)$ =2.09x10 ⁻¹⁸ J	2
24.	(a) Noble gases have stable electronic configuration. Hence to add an electron	1
	(b) Because the atomic size increases on moving down the group and hence the	1
	ionisation energy decreases	1
	(c) Nitrogen has half-filled electronic configuration hence stable	
25.	(a) if the atoms have significantly different electronegativities	(1) x3
	(b) CO_2 and CCl_4 opposite dipoles get cancelled or symmetrical molecule	
26.	(a) $\Delta G = \Delta H - T\Delta S$ The reaction will be spontaneous when ΔG is negative	1
	ΔH -ve and ΔS +ve means ΔG will be always -ve for any temperature	½ x4 =2
27.	(b) Mass, volume, internal energy - extensive Pressure - intensive (a) $6 \text{ H}^+ + 5\text{NO}_2^- + 2\text{MnO}_4^- \rightarrow 5\text{NO}_3^- + 2 \text{ Mn}^{2+} + 3\text{H}_2\text{O}$	2
	(b) (i) Fe(ll)O (ii) Sn(II)Cl ₂	$\frac{1}{2} + \frac{1}{2}$
28	(a) (i) H ⁺ electrophile (ii) NH ₃ nucleophile (iii) BF ₃ electrophile	$\frac{1}{2} x4 = 2$
	(iv) OH ⁻ nucleophile	
		1/2
	\downarrow \downarrow	
	Υ OH	
		1/
	(b) (c) 1-chloro-2-methylpropane	1/2
29.	(a) $n=3, l=0$ (b) 9	1
	(c) $1 s^2 2 s^2 2 p^6 3 s^2 3 p^6 4 s^1 3 d^5$.	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
	OR	2
	(c) 7 electrons	2
30	(a) 0 (b) $\Lambda G = -2.303 \text{RT} \log K_c$	1
	$= -2.303 \times 8.3 \times 300 = -5734.47 \text{J}$	[*] /2 1/2
	(a) 2 CO ₂ + 3 H ₂ O = Λ Hf (C ₂ H) = 700 V I/mol	1
	Δ Hf (C ₂ H ₆) = -920 KJ/mol	1
	OR	
	(c) Now $\Delta U = \Delta H - \Delta n \sigma R T$	1
		1⁄2

	$\Delta ng = 2 - 4 = -2$	1/2
	$-93 \times 10^{\circ} - (-2) \times 8.314 \times 300$ 88011.6 I	
31	- 00011.03	
	(a) I - H ₂ gas yield increases	$\frac{1}{2} \times 3 =$
	II- H ₂ gas yield decreases	15
	III- no change	1.3
	(b) I -Kc increases	$\frac{72}{15} \times 35 =$
	II remains the same	1.5
	III remains the same	
	(c) A homogeneous equilibrium is one in which all species are present in the	1/2
	same phase.	1/2
	Any relevant Example	1
	(d) $HF < HCl < HBr < HI$	1
	OR	
	(a) $pH = -\log[H+] = -\log 10^{-1} = 1$	1
	(b) A solution whose pH is not altered to any great extent by the addition of	$\frac{1}{2} + \frac{1}{2}$
	small quantities of either an acid or base is called buffer solution.	, , _
	Acidic buffer - Sodium ethanoate + Ethanoic acid	1/2 +1/2
	(c) conjugate acid, H_3O^+ , OH- conjugate base	1/2 / 2
	(d) (l) solubility decreases	72
	(II) Ag' concentration decreases.	1/2
	(e) Henry's law states that at the amount of gas that is dissolved in a liquid is	1
	ultectly proportional to the partial pressure of that gas above the liquid	
	when the temperature is kept constant	
32.	(a) 5σ and 2π bonds.	1x5=5
	(b) 0	
	(c) : C \equiv O :	
	(d) the size of Lithium-ion is much smaller than the size of Sodium ion	
	(e) Sigma bond is formed by linear or co-axial overlapping of the atomic	
	orbitals of two atoms while pi bonds are formed by the parallel or lateral	
	overlapping of the atomic orbitals.	
	(f) Trigonal pyramidal ;107 ⁰	
	(g) failed to explain the relative stability of molecules.	
	The shape of the molecule is not predicted by the octet rule.	
1		

